본문 바로가기

Robotics

37일차 - 2D Localization

반응형

아래는 1D Localization 측정 및 이동에 대한 코드입니다.

#Modify the previous code so that the robot senses red twice.

p=[0.2, 0.2, 0.2, 0.2, 0.2]
world=['green', 'red', 'red', 'green', 'green']
measurements = ['red', 'red']
motions = [1,1]
pHit = 0.6
pMiss = 0.2
pExact = 0.8
pOvershoot = 0.1
pUndershoot = 0.1

def sense(p, Z):
    q=[]
    for i in range(len(p)):
        hit = (Z == world[i])
        q.append(p[i] * (hit * pHit + (1-hit) * pMiss))
    s = sum(q)
    for i in range(len(q)):
        q[i] = q[i] / s
    return q

def move(p, U):
    q = []
    for i in range(len(p)):
        s = pExact * p[(i-U) % len(p)]
        s = s + pOvershoot * p[(i-U-1) % len(p)]
        s = s + pUndershoot * p[(i-U+1) % len(p)]
        q.append(s)
    return q

for k in range(len(measurements)):
    p = sense(p, measurements[k])
    p = move(p, motions[k])

print p         

1D 지도의 각 셀에 대한 확률 리스트 p, 지도 world, 측정 값 리스트 measurements, 이동 리스트 motions, 센서가 일치/불일치 할 확률 pHit/pMiss, 제대로 이동할 확률 pExact, 한 칸 더 이동할 확률 pOvershoot, 한 칸 덜 이동할 확률 pUndershoot입니다. sense(p, Z) 함수는 측정 값에 따라 product를 수행하고 renormalize 합니다. move(p, U) 함수는 이동 방향으로 convolution 하며, 로봇은 측정 후 이동합니다.

이를 토대로 2D Localization을 만드는 게 이번 과제입니다. 다음은 2D Localization 코드 템플릿입니다.

# The function localize takes the following arguments:
#
# colors:
#        2D list, each entry either 'R' (for red cell) or 'G' (for green cell)
#
# measurements:
#        list of measurements taken by the robot, each entry either 'R' or 'G'
#
# motions:
#        list of actions taken by the robot, each entry of the form [dy,dx],
#        where dx refers to the change in the x-direction (positive meaning
#        movement to the right) and dy refers to the change in the y-direction
#        (positive meaning movement downward)
#        NOTE: the *first* coordinate is change in y; the *second* coordinate is
#              change in x
#
# sensor_right:
#        float between 0 and 1, giving the probability that any given
#        measurement is correct; the probability that the measurement is
#        incorrect is 1-sensor_right
#
# p_move:
#        float between 0 and 1, giving the probability that any given movement
#        command takes place; the probability that the movement command fails
#        (and the robot remains still) is 1-p_move; the robot will NOT overshoot
#        its destination in this exercise
#
# The function should RETURN (not just show or print) a 2D list (of the same
# dimensions as colors) that gives the probabilities that the robot occupies
# each cell in the world.
#
# Compute the probabilities by assuming the robot initially has a uniform
# probability of being in any cell.
#
# Also assume that at each step, the robot:
# 1) first makes a movement,
# 2) then takes a measurement.
#
# Motion:
#  [0,0] - stay
#  [0,1] - right
#  [0,-1] - left
#  [1,0] - down
#  [-1,0] - up

def localize(colors,measurements,motions,sensor_right,p_move):
    # initializes p to a uniform distribution over a grid of the same dimensions as colors
    pinit = 1.0 / float(len(colors)) / float(len(colors[0]))
    p = [[pinit for row in range(len(colors[0]))] for col in range(len(colors))]

    # >>> Insert your code here <<<

    return p

def show(p):
    rows = ['[' + ','.join(map(lambda x: '{0:.5f}'.format(x),r)) + ']' for r in p]
    print '[' + ',\n '.join(rows) + ']'

#############################################################
# For the following test case, your output should be 
# [[0.01105, 0.02464, 0.06799, 0.04472, 0.02465],
#  [0.00715, 0.01017, 0.08696, 0.07988, 0.00935],
#  [0.00739, 0.00894, 0.11272, 0.35350, 0.04065],
#  [0.00910, 0.00715, 0.01434, 0.04313, 0.03642]]
# (within a tolerance of +/- 0.001 for each entry)

colors = [['R','G','G','R','R'],
          ['R','R','G','R','R'],
          ['R','R','G','G','R'],
          ['R','R','R','R','R']]
measurements = ['G','G','G','G','G']
motions = [[0,0],[0,1],[1,0],[1,0],[0,1]]
p = localize(colors,measurements,motions,sensor_right = 0.7, p_move = 0.8)
show(p) # displays your answer

로봇은 1D와는 반대로 이동, 측정 순으로 움직이며, pHitsensor_right, pMiss1 - sensor_right으로 간소화 되었습니다. pExactp_move가 되었으며, 1 - p_move의 확률에 over/undershoot이 발생하는 대신 이동 불가로 변경되었습니다. 마지막 측정을 마친 뒤 확률을 출력했을 때 테스트 케이스 아웃풋과 +-0.001의 오차 이내로 일치하는 것이 목표입니다.

추가 테스트 케이스는 다음과 같습니다. 제출하기를 누르면 추가 테스트 케이스까지 검사한 뒤, 모두 정답이어야만 통과할 수 있습니다.

# test 1
colors = [['G', 'G', 'G'],
          ['G', 'R', 'G'],
          ['G', 'G', 'G']]
measurements = ['R']
motions = [[0,0]]
sensor_right = 1.0
p_move = 1.0
p = localize(colors,measurements,motions,sensor_right,p_move)
correct_answer = (
    [[0.0, 0.0, 0.0],
     [0.0, 1.0, 0.0],
     [0.0, 0.0, 0.0]])

# test 2
colors = [['G', 'G', 'G'],
          ['G', 'R', 'R'],
          ['G', 'G', 'G']]
measurements = ['R']
motions = [[0,0]]
sensor_right = 1.0
p_move = 1.0
p = localize(colors,measurements,motions,sensor_right,p_move)
correct_answer = (
    [[0.0, 0.0, 0.0],
     [0.0, 0.5, 0.5],
     [0.0, 0.0, 0.0]])

# test 3
colors = [['G', 'G', 'G'],
          ['G', 'R', 'R'],
          ['G', 'G', 'G']]
measurements = ['R']
motions = [[0,0]]
sensor_right = 0.8
p_move = 1.0
p = localize(colors,measurements,motions,sensor_right,p_move)
correct_answer = (
    [[0.06666666666, 0.06666666666, 0.06666666666],
     [0.06666666666, 0.26666666666, 0.26666666666],
     [0.06666666666, 0.06666666666, 0.06666666666]])

# test 4
colors = [['G', 'G', 'G'],
          ['G', 'R', 'R'],
          ['G', 'G', 'G']]
measurements = ['R', 'R']
motions = [[0,0], [0,1]]
sensor_right = 0.8
p_move = 1.0
p = localize(colors,measurements,motions,sensor_right,p_move)
correct_answer = (
    [[0.03333333333, 0.03333333333, 0.03333333333],
     [0.13333333333, 0.13333333333, 0.53333333333],
     [0.03333333333, 0.03333333333, 0.03333333333]])

# test 5
colors = [['G', 'G', 'G'],
          ['G', 'R', 'R'],
          ['G', 'G', 'G']]
measurements = ['R', 'R']
motions = [[0,0], [0,1]]
sensor_right = 1.0
p_move = 1.0
p = localize(colors,measurements,motions,sensor_right,p_move)
correct_answer = (
    [[0.0, 0.0, 0.0],
     [0.0, 0.0, 1.0],
     [0.0, 0.0, 0.0]])

# test 6
colors = [['G', 'G', 'G'],
          ['G', 'R', 'R'],
          ['G', 'G', 'G']]
measurements = ['R', 'R']
motions = [[0,0], [0,1]]
sensor_right = 0.8
p_move = 0.5
p = localize(colors,measurements,motions,sensor_right,p_move)
correct_answer = (
    [[0.0289855072, 0.0289855072, 0.0289855072],
     [0.0724637681, 0.2898550724, 0.4637681159],
     [0.0289855072, 0.0289855072, 0.0289855072]])

# test 7
colors = [['G', 'G', 'G'],
          ['G', 'R', 'R'],
          ['G', 'G', 'G']]
measurements = ['R', 'R']
motions = [[0,0], [0,1]]
sensor_right = 1.0
p_move = 0.5
p = localize(colors,measurements,motions,sensor_right,p_move)
correct_answer = (
    [[0.0, 0.0, 0.0],
     [0.0, 0.33333333, 0.66666666],
     [0.0, 0.0, 0.0]])

다음은 제가 작성한 코드입니다.

# h = length of colors
# w = length of colors[0]
# [dy, dx] from motions
def move(p, h, w, dy, dx, p_move):
    q = []
    for y in range(h):
        q.append([])
        for x in range(w):
            # balancing
            # q[y][x] = exact move rate * p[y-dy][x-dx] + no move rate * p[y][x]
            val = p[(y-dy)%h][(x-dx)%w] * p_move
            val += p[y][x] * (1 - p_move)
            q[y].append(val)
    return q

# measurement from measurements
def sense(p, h, w, colors, measurement, sensor_right):
    q = []
    sum_of_q = 0 # for renormalize
    for y, row in enumerate(colors):
        q.append([])
        for x, cell in enumerate(row):
            hit = measurement == cell
            val = p[y][x]
            val *= sensor_right if hit else (1 - sensor_right)
            q[y].append(val)
            sum_of_q += val

    # renormalize
    for y in range(h):
        for x in range(w):
            q[y][x] /= sum_of_q
    return q

def localize(colors,measurements,motions,sensor_right,p_move):
    # initializes p to a uniform distribution over a grid of the same dimensions as colors
    h = len(colors)
    w = len(colors[0])
    pinit = 1.0 / h / w
    p = [[pinit for _ in range(w)] for _ in range(h)]

    for measurement, (dy, dx) in zip(measurements, motions):
        # move
        p = move(p, h, w, dy, dx, p_move)
        # ... and measure
        p = sense(p, h, w, colors, measurement, sensor_right)

    return p

def show(p):
    rows = ['[' + ','.join(map(lambda x: '{0:.5f}'.format(x),r)) + ']' for r in p]
    print '[' + ',\n '.join(rows) + ']'

colors = [['R','G','G','R','R'],
          ['R','R','G','R','R'],
          ['R','R','G','G','R'],
          ['R','R','R','R','R']]
measurements = ['G','G','G','G','G']
motions = [[0,0],[0,1],[1,0],[1,0],[0,1]]
p = localize(colors,measurements,motions,sensor_right = 0.7, p_move = 0.8)
show(p) # displays your answer

차원이 늘어나면 for loop 하나 더 해주는 식입니다. 그래서 이러한 방식의 Localization은 메모리 크기가 지수적으로 상승한다는 단점이 있습니다.

반응형